
Comprehension of object-oriented software cohesion:

the empirical quagmire

Steve Counsell*, Emilia Mendes** and Stephen Swift***
*Department of Computer Science, Birkbeck College, Universit yof London,

London WC1E 7HX. Email: steve@dcs.bbk.ac.uk
**Department of Computer Science, University of Auckland, New Zealand.

***Department of Information Systems and Computing, Brunel Universit y,Uxbridge.

Abstract

It is a little over ten years sinc e Chidamber and
Kemerer's obje ct-oriented (OO) metric suite which in-
cluded the Lack of Cohesion Of Methods (LCOM) met-
ric was �rst proposed [9]. Despite considerable e�ort
both theoretically and empirically sinc e then, the soft-
war eengineering community is still no ne arer �nding
a generally ac cepte d de�nition or measure of OO cohe-
sion. Y et,achieving highly cohesive software is a cor-
nerstone of software comprehension and hence, main-
tainability. In this pap er, we suggest a number of sup-
positions as to why a de�nition has eluded (and we feel
will continue to elude) us. We supp ortthese suppo-
sitions with empirical evidence from three large C++
systems and a cohesion metric based on the parame-
ters of the class methods; we also draw from other re-
lated work. Two major conclusions emerge from the
study. Firstly, any sensible cohesion metric does at
least provide insight into the featur es of the systems
being analysed. Se condly however, and less reassur-
ingly, the deeper the investigative search for a de�nitive
measur eof cohesion, the more problematic its under-
standing becomes; this casts serious doubt on the use of
cohesion as a meaningful featur eof obje ct-orientation
and its viability as a tool for software comprehension.

1 Introduction

It is over tw en ty years since Yourdon and Constan-
tine [19] �rst proposed their seven-point ordinal scale
for component cohesion. A t one end of their scalefunc-
tional cohesion indicated that a module performed a
single well-de�ned function, for example operations on
a single data structure. A t the other end of the scale

coincidental cohesion indicated that the module per-
formed more than one function, and that those func-
tions were unrelated. More recently, the Lack of Cohe-
sion Of Methods in a class (LCOM) metric as part of
the Chidamber and Kemerer (C&K) metrics suite was
seen as the seminal OO cohesion metric. A number of
attempts have been made to improve upon that metric
and capture cohesion more fully . It is only recently,
how ev er, that cohesion has become the subject of any
real scrutiny. For example, Briand et al. [6] propose
a framework for cohesion measurement in which var-
ious cohesion metrics are evaluated theoretically. An
empirical evaluation of OO features including that of
cohesion, with respect to the probability of fault detec-
tion, was also undertaken in Briand et al. [7].

In this paper, w eexamine cohesion from a practi-
cal viewpoint. We play devil's advocate through three
suppositions which support the belief that there is no
universally acceptable measure of cohesion. We be-
lieve further, that an ycohesion metric has more of a
role to play during application development than post-
implementation. We thus introduce an OO cohesion
metric based on the parameters of the methods of an
OO class. This acts �rstly ,as a means of illustrating
some of the problems faced with any cohesion metric of
this type. Secondly, it acts as a means of evaluating the
metric at the earliest development stage possible, i.e.,
when the skeleton layout of a class becomes available
(and the declaration of method parameters is known).
We accept that cohesion is a subjective concept and
the proposed metric is just our view of what cohesion
is. Nonetheless, the metric provides a useful starting
point for analysing features of cohesion. A key feature
of our metric is the well documented principle of Ham-
ming Distance [14]. Sixty classes across three large
C++ systems were used as the basis of our empirical
study and collection of this metric. The three systems

1

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

comprised a GUI application, a compiler and a user
in terface framework.

In Section 2, related work is described. A descrip-
tion of the three systems studied and the three suppo-
sitions examined are described in Section 3 (empirical
evaluation). Data analysis to support the three sup-
positions is then given (Section 4), and a discussion of
the issues raised is given in Section 5. Finally, some
conclusions are drawn (Section 6).

2 Related Work

The roots of cohesion go as far bac kas the early
sev enties, when Stevens et al. [18] �rst began looking
at inter-module metrics. Later, Yourdon and Constan-
tine [19] proposed their seven-point ordinal scale for
component cohesion. More recently, the best known
attempt at capturing cohesion through a metric is the
Lac k of Cohesion in Methods (LCOM) metric proposed
by Chidamber and Kemerer [9]. A number of attempts
ha ve been made to re�ne the originally de�ned metric
[16, 15], both for practical and theoretical reasons. The
original metric calculates cohesion according to the use
of class attributes in the methods of a class. The met-
ric is based on the principle that a variable occurring in
many methods of a class causes that class to be more
cohesive than one where the same variable is used in
very few methods of the class. A high value of the
LCOM metric indicates that the methods in the class
are unrelated, a low value of the metric indicating that
they are related. How ev er,de�nition of the metric is
di�cult to follow. The metric values produced are dif-
�cult to interpret and give little insight into the nature
of the class other than the distribution of attributes
therein. The LCOM is also an implementation metric
which ignores the need for a measure of cohesion earlier
in the development process (i.e. at design time).

The metric used for the empirical evaluation de-
scribed in this paper is based on the Cohesion Among
Methods in a Class (CAMC) metric proposed and eval-
uated in Bansiya et al. [2]. T ocompute the CAMC
metric, for a class with n methods, the union of pa-
rameter types in the method headers of a class T is
composed. A set M i of all parameter object types for
each method is constructed. An intersection set (P i)
ofM i with the union set T is then calculated. The car-
dinality of each of these intersection sets is calculated
and all those values summed. That sum is then divided
by: jT j multiplied by n. More formally expressed:

T = [M i, 8i = 1 to n.

If P i is the intersection of setM i with T , i.e.,
P i = M i \ T then:

CAMC =
�
n

i=1
jPij

jT j�n

We note that the set T is always non-empty, since it
will always contain at least one parameter, namely, the
this pointer receiv ed by all methods.

In the study by Bansiya et al. seven teen C++
classes were used for the case study drawn from three
w ell-known graphical user interface pac kages. The
CAMC metric was shown to correlate strongly with the
LCOM metric of Chidamber and Kemerer, indicating
that, being a design metric, it is thus preferable to the
LCOM metric. It is also stated in the same study that
the CAMC metric is easier to collect and provides the
developer with an earlier indication of cohesion. The
CAMC metric was also found to correlate with external
experts' evaluation of cohesiveness of the same seven-
teen classes, suggesting further that the metric re
ects
the views on cohesion of system developers.

Data slicing has also been used as a measure of func-
tional cohesion [3]. Analysis of program slices allo ws
analysis of the frequency of attribute use in programs
and empirical studies have been undertaken in this area
also [4]; information theoretic approaches ha vealso
been used to tac kle the measurement of cohesion and
coupling [1].

The lack of rigour, appeal to measurement theory
and empirical evaluation of cohesion metrics is high-
lighted well in Briand et al. [6] where clari�cation of
the terminology associated with the measurement of
cohesion, a framework for measuring cohesion and com-
paring measures of cohesion together with a review of
current work are given.

A variation of the metric proposed in this paper was
�rst used in Counsell et al. [11] to determine the dis-
agreement betw eenfour groups of subjects; the sub-
jects were taking part in an experiment in which they
had to identify four faults seeded in a requirements
document. The metric ga vea valuable insight into
the characteristics within the individual groups and al-
low ed comparison between the four groups to be made.
Its usefulness for establishing the distance betw een t w o
randomly selected entities was a key motivation for us-
ing it rather than the CAMC metric to measure cohe-
sion in this paper. Our metric also eliminates some of
the theoretical anomalies associated with the CAMC
metric.

3 Empirical Evaluation

In the following section, we state and describe three
suppositions about cohesion, all of which w eattempt
to support through empirical investigation.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

3.1 Suppositions about cohesion

� Supposition one. No sensible measure of cohe-
sion can avoid incorporating coupling in its calcu-
lation. We de�ne coupling in terms of an associ-
ation metric (NAS) in Section 3.2. Cohesion has
often been associated with coupling and in most
softw are engineering texts the tw o are juxtaposed,
see Pressman [17], for example. In terms of OO
metrics, the relationship is even more de�ned { co-
hesion is almost a surrogate measure for coupling.

� Supposition two. Size is a confounding factor in
assessing and calculating cohesion. In this paper,
w e refute the argument that small classes are more
cohesive than larger classes (where size is de�ned
in terms of the number of methods in a class). A t
present, only anecdotal evidence exists to suggest
that larger classes are less cohesive than smaller
ones.

� Supposition three. The existence of class fea-
tures suc h as constructors confuses the measure-
ment of cohesion and assessment of cohesion by
expert developers.

Before examining each of these suppositions, we de�ne
the cohesion metric which will be used to support those
suppositions and the data collected.

3.2 The HD metric

T o compute the HD metric for a class withn meth-
ods, the set of parameter types of the class are listed
as column headings of a matrix. Each method is then
considered individually. A value of one is placed under
a parameter type if the method being considered uses
that parameter type in its parameter list; otherwise a
value of zero is placed under the parameter type. There
are hence n rows containing combinations of zeros and
ones in the body of the matrix. A Hamming Distance
is then taken betw een each pair of rows.

The value obtained from the abo veindicates the
level of disagreement betw eenthe rows in the matrix
constructed. Subtracting this value from one gives the
lev el of agreement betw eenthe methods of the class
and hence the HD measure. The value of the HD met-
ric is a positive value x where 0 � x � 1. The closer to
zero the value of the HD metric, the less cohesive the
class; the closer to one the HD metric, the greater the
cohesion of the class. In this paper, calculation of the
HD metric includes all methods whether constructors
or non-constructors.

3.2.1 Example

Consider the following class de�nition for Alert (a
class found in the Et++ system, see Section 3.3). It
has six methods in total, one of which is a constructor
and one a destructor. The constructor and destructor
are de�ned:

Alert(AlertType, byte *text= 0,

Bitmap *bm= 0);

~Alert();

It has four other methods, de�ned as:

VObject *DoCreateDialog();

int Show(char *fmt);

int ShowV(char *fmt, va_list ap);

void InspectororId(char *buf, int sz);

The enumerated parameter type set for this class is
therefore:

{AlertType,byte,Bitmap,char,va _list ,int}

We note that the char parameter is only counted once
ev en though it occurs three times in the methods. This
w as a necessary simpli�cation for calculation of the HD
metric. A matrix is then constructed by considering
the occurrence of each parameter type in each method
and allocating a zero or one accordingly. For the Alert
class, this gives:

AlertType byte Bitmap char int va_list

Meth. 1 1 1 1 0 0 0

Meth. 2 0 0 0 0 0 0

Meth. 3 0 0 0 0 0 0

Meth. 4 0 0 0 1 0 0

Meth. 5 0 0 0 1 0 1

Meth. 6 0 0 0 1 1 0

F rom this matrix, each pair of rows can then be com-
pared for disagreement. F or example, row 1 disagrees
with row 2 in three columns. Row 2 disagrees with
row 5 in tw o columns. Comparing every combination
of pairs of rows for disagreement, giv es the following
matrix:

Row 1 Row 2 Row 3 Row 4 Row 5

Row 2 3

Row 3 3 0

Row 4 4 1 1

Row 5 5 2 2 1

Row 6 5 2 2 1 2

We note that the pairwise comparison is uni-directional
to preven t double counting. Summing the values of the
individual disagreements gives a n umerator for the HD

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

metric of thirty-four. The total number of comparisons
is �fteen and the number of parameters six, giving a
denominator of ninety. The HD metric is therefore 1 -
0.38 i.e., 0.62.

The HD metric has a value of one when there are no
disagreements bet w een all rows of the matrix formed as
above { the class has the highest possible cohesion. A
value of zero (low est possible cohesion) is obtained for
the HD metric when there is maximum disagreement
betw een the rows of the matrix. This can only occur in
the case of a class with tw o methods due to the binary
nature of entries in the matrix composed of ones and
zeros. We also note that the HD metric cannot be
calculated in the case where the parameter type set for
all methods of a class is empty. How ev er, it is felt that
this case does not occur frequently enough to cause any
real threat to the validit yof the metric. Based upon
the de�nition above, w efeel that the HD metric is a
suitable measure of what we de�ne as cohesion. It gives
an average measure of all pairwise method comparisons
on the similarity of method parameter types.

3.3 Data Collection

The HD metric was collected manually from the def-
initions of sixty classes in three systems. We note that
the choice of which classes to analyse was not pre-
determined on any particular criteria. The �rst tw en ty
classes in alphabetic order were tak en from the direc-
tory in which eac h of the systems was stored.

1. System One, Edge, a Graph Editor, consisting of
approximately 30.8 thousand non-comment source
lines (KNCSL) and containing 80 classes.

2. System Two, Rocket, a compiler, consisting of 32.4
KNCSL and containing 322 classes.

3. System Three, Et++, a user interface framework,
consisting of approximately 56.3 KNCSL and con-
taining 508 classes.

F or the study described in this paper, as well as the HD
metric values, the following metrics were also collected:

1. The Number of Methods de�ned by eac h Class
(NMC). This included private, protected and pub-
lic methods.

2. The Number of class Associations (NAS). This was
collected from the object model by counting the
number of lines emanating from a class on a UML
class diagram. It represents the number of other
classes to which the class is coupled. The NAS
does not include the self-coupling this feature of

C++ or coupling due to inheritance. In the Exam-
ple from Section 3.3, the class has tw o associations,
namely AlertType and Bitmap.

3. The cardinality of the parameter type set, hence-
forward known as P ,was also collected for eac h
class, together with the number of values in P
which were system de�ned parameters (as opposed
to other possible types of parameter). In the Ex-
ample, byte, char and int are the system de�ned
parameter types. Also considered system de�ned
types, but not explicitly mentioned here would be
double, boolean, float, long and short. The
developer de�ned parameter types are:

{AlertType, Bitmap, va_list}

Table 1 provides summary data for each of the metrics
collected (for the tw en ty classes analysed in each sys-
tem). A number of features can be seen from this table.
The Et++ system con tainsthe highest median value
for P and Edge has the low est median value for P. In-
spection of the classes reveals methods in Et++ to have
relativ ely larger signatures and a higher proportion of
system de�ned, as opposed to user de�ned parameters.
In contrast, classes in the Edge system tend to have
relativ ely small signatures and small parameter sets.
Inspection of the classes reveals a relatively low num-
ber of system de�ned parameters in Edge, and even
few er system de�ned parameters in the Rocket system.

4 Data Analysis

In the following sections, each of the three supposi-
tions described in Section 3.1 are re-stated (for clarity)
and then examined.

4.1 Suppostion one

Supposition one is re-stated as:

No sensible measure of cohesion can avoid in-
corporating coupling in its calculation.

The reason why cohesion is associated with coupling
in the OO metric sense is that, in every proposed mea-
sure of cohesion, there is a surrogate relationship with
coupling.

According to the de�nition of the HD metric, the
value of P is the set of parameters of the class. This
is likely to contain a mixture of primitive and non-
primitive attributes. F or supposition one, we thus ex-
amined the relationship betw eenP and NAS for the
three systems. T able 2 shows the correlation betw een

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

System Metric Min Max Median Mean
System One (Et++) NAS 2 13 3.00 4.10

NMC 2 21 6.50 7.70
P 1 8 5.00 4.75

System Two (Roc ket) NAS 1 7 2.00 2.50
NMC 3 39 9.00 10.15
P 1 4 3.00 2.65

System Three (Edge) NAS 1 7 2.50 2.45
NMC 2 24 11.50 12.45
P 1 6 2.00 2.90

Table 1. Summary data for the three systems studied

the P values and the corresponding values for the NAS
metric. The relationships between the variables were
measured using three correlation coe�cients namely,
P earson's, Kendall's and Spearman's correlation co-
e�cients. P earson's correlation coe�cient is appro-
priate for parametric data, where certain assumptions
about the distribution of data are assumed. Kendall's
and Spearman's correlation coe�cients relate to non-
parametric data, and do not make an y assumptions
about the distribution of the data.

Every value for Systems One and Three is statis-
tically signi�cant at the 1% lev el. Interestingly, Sys-
tem Two sho wsa di�erent pattern. It w ouldappear
that methods in the classes of Rocket con tain rela-
tively smaller lev els of coupling when compared with
the t w o other classes.Inspection of the classes reveals
tw o factors contributing to the lack of signi�cant cor-
relation for this system. Firstly ,the majority of the
methods in Rocket classes have no parameters; nearly
all classes had a void dump(); method which prints
the data structure that the class manipulates. Most of
the Rocket classes studied also had at least one opera-
tor overloading method (in each case declaring no pa-
rameters). Methods in the classes of the Rocket system
therefore tended to be very basic in their parametric re-
quirements. Secondly, unlike the other two systems, a
substantial amount of the coupling in Rocket eminates
from the return types of the methods; again, this is due
to the nature of the system, where lists are frequently
passed as parameters and returned as such. A compiler
w ould inevitably need to manipulate such data struc-
tures as an essen tial part of its functionality. Hence
the v alue of P is not so high for this system.

A similar result to that shown in Table 2 was found
for a set of 114 Java classes in an earlier study of three
pac kages Counsell et al.[10]. In that study, the CAMC
metric (on which the HD metric is based) was ev alu-
ated. T aking all classes together, signi�cant correlation
values, at the 1% level, betw een the NAS and aT value
w ere found to be 96% (Pearson's), 64% (Kendall's) and

51% (Spearman's). The only di�erence between the T
value and the P value herein is that the former counts
the this self-coupling value in the parameter set, while
the latter does not. We thus �nd strong support for
supposition one regarding the relationship betw een co-
hesion and coupling.

We accept that our HD metric ignores the distribu-
tion of attributes in the class (i.e., declared as either
public, private or protected). This could be seen as
a dra wback of the metric, since the original LCOM
and many subsequent alternative versions of LCOM
have incorporated attributes in their calculation. T o
counter this criticism, �ve random classes were selected
from each set of tw en ty classes and the number of non-
primitive attributes counted. It was found that for
the Et++ system, 63% of attributes for the selected
�ve classes w erenon-primitive. For the Rocket sys-
tem, 57% of all attributes were non-primitive; classes
in this system tended to have very few (and in most
cases zero explicitly stated attributes). Finally, for
the edge system, 64% of attributes in the chosen �v e
classes were non-primitive. We note that in the case of
the Rocket system, more often than not, a class con-
tained zero attributes. This is a feature of systems
which would severely impair a cohesion measure based
solely on those attributes.

We conclude that any measure of cohesion which
uses parameters of class methods, the attributes de-
clared by a class, or a combination of both, cannot
avoid including a high degree of coupling to other
classes in its calculation. Comprehension of class co-
hesion is largely an exercise in comprehension of class
coupling.

4.2 Supposition two

Supposition tw o is re-stated as:

Size is a confounding factor in assessing and
calculating cohesion.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

System P earson's Kendall's Spearman's
System One (Et++) 0.59* 0.61* 0.69*
System Two (Rocket) 0.41 0.28 0.30
System Three (Edge) 0.83* 0.62* 0.74*
* signi�cant at the 1% level

Table 2. NAS vs. P correlation coefficients for the three systems investigated.

A commonly-held belief regarding cohesion is that
small classes (with few methods) are generally more
cohesive than larger classes. A small number of meth-
ods would seem to imply that those methods are more
in ter-related than those in larger classes. Table 3 shows
the correlation coe�cients for NMC versus HD for each
of the three systems. Counter-in tuitively, the values in
the table suggest that, for each system, the larger the
number of methods, the more cohesive the class. A
simple explanation may account for this result. F or
systems such as Rocket, with a small set of parameters
and a high proportion of methods with zero param-
eters, the disagreement is relativ ely low amongst the
methods of its classes. Agreement is therefore quite
high and hence so too is cohesion. The smaller the
NMC, the greater the disagreement if one or two pa-
rameters are distributed unevenly within the signatures
of the methods. Classes in Et++ on the other hand
tended to have relatively few methods with zero pa-
rameters, suggesting that this promoted disagreement
betw een the parameter sets and detracted from the co-
hesiv eness of the classes studied in this system.

In terms of the HD metrics' susceptability to size,
w e could criticise it for being sensitive to classes with
a large number of methods having zero parameters. In
terms of the HD metric and its ability to capture cohe-
sion, it would seem that the best way to develop classes
and hence systems is to �rstly, minimise the set of pa-
rameters to the classes and secondly, utilise as many
of that set of parameters in as many methods of the
class as possible (we note that this says nothing with
respect to how large or small the classes should be { in
theory a large class can be equally cohesive as a small
class). Interestingly, the �rst of these tw oguidelines
would seem to have been the goal of every cohesion
metric advocated in the past; the LCOM metric itself
is based on this principle.

A similar result to that stated w as found for the
114 Java classes studied in [10] where the CAMC met-
ric was used. Since the CAMC w assho wn to corre-
late strongly with the LCOM metric [2], it would be
fair to sa y that, to date, there is no empirical evidence
to suggest that smaller classes are an y morecohesive
(according to the measures of cohesion currently a vail-
able) than larger classes. Since, in this paper, we view

coupling as a surrogate measure for cohesion, further
evidence for the confounding e�ect of size would be to
show the lack of positive correlation betw een coupling
and size (given b y the NMC and NAS metrics, respec-
tively). In other words, class cohesion (i.e., complexity
of coupling) is unrelated to class size (its number of
methods). Table 4 shows the correlation values be-
tw een these tw o metrics.

F romTable 4 it can be seen that only tw oof the
nine values are signi�cant. The tw o signi�cant values
are both Pearson's, which (being parametric in nature)
could be considered less re
ective of data typically ex-
tracted from features of software. The trend indicates
no link betw eencoupling and size. This relationship
becomes even more tenuous when you consider that
the NAS metric only counts unique occurrences of an
association between tw oclasses. One ob vious exam-
ple which further supports this supposition is the case
of a key class [12], a class which typically con tainsa
large number of methods to provide key functionality
to other classes. We w ouldexpect suc h a class to be
relativ ely cohesive due to its importance in the system
being considered and the large amount of care given to
it during its lifetime by developers (owing to its impor-
tance).

We further support our supposition with a recen t
paper by El Emam et al. [13] which claims that size
is a confounding factor for various metrics, including
the set of metrics initially proposed by Chidamber and
Kemerer when related to the fault-proneness of a class;
it casts doubt on validit y of previous studies suggesting
that the conclusions from suc h studies should be re-
examined. The danger in not controlling confounding
factors is also highlighted in Briand et al. [5].

F rom the evidence presented, it would seem that size
(expressed here in terms of the number of methods)
is indeed a confounding factor in the measurement of
cohesion. Comprehension of class cohesion should ac-
count for size anomalies in the metric itself.

4.3 Supposition three

Supposition three is re-stated as:

The existence of class features such as con-
structors confuses issues associated with mea-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

System P earson's Kendall's Spearman's
System One (Et++) 0.75* 0.70* 0.84*
System Two (Rocket) 0.57* 0.27 0.34
System Three (Edge) 0.50* 0.42* 0.55*
* signi�cant at the 1% level

Table 3. HD vs. NMC correlation coefficients for the three systems investigated.

System P earson's Kendall's Spearman's
System One (Et++) 0.82* 0.31 0.38
System Two (Rocket) 0.50* 0.26 0.35
System Three (Edge) 0.21 0.14 0.17
* signi�cant at the 1% level

Table 4. NMC vs. NAS correlation coefficients for the three systems investigated.

suring cohesion and assessment of cohesion by
expert developers.

In the paper by Bansiya et al., the CAMC metric was
calculated with and without the constructors of each
class. It w as suggested in the same paper that cal-
culation of the CAMC metric for classes with a small
number of methods may be unfairly in
uenced by the
inclusion of constructors in its calculation, since, in the-
ory , the constructor is more likely to use parameters
than other methods; the same in
uence is less likely
with larger classes. In this paper therefore, a sample of
six classes were taken from each of the three systems
studied and the HD metric re-calculated excluding the
constructors. The three largest classes and the three
smallest classes of each set of t wenty classes made up
these six classes (we omit the data for the Rocket sys-
tem for space reasons). T able 5 shows HD values for the
three largest and three smallest classes with and with-
out constructors, together with the di�erence in HD
values after removing the constructor(s). The num-
ber of constructors in eac h class is sho wnin brackets
after the NMC values. Removal of the constructor(s)
does seem to a�ect the smaller classes more than the
larger, how ever. The exception to this is Class 5 which
shows no change in the metric. Inspection of this class
(BagIter) reveals it to ha veone parameter and that
parameter is used in the constructor and one other of
its three methods. Removal of the constructor does not
therefore a�ect the value of the HD metric since the re-
moval of an agreement is o�set by the introduction of
a disagreement.

T able 6 shows the corresponding values for the Edge
system. Removal of the constructor in the large classes
causes very little c hange in the values of the HD. For
smaller classes, removal of the constructor rendered the
HD metric not computable (nc) for tw o of the smaller
classes. In these tw ocases, removing the constructor

caused the class to have an empty parameter set. In-
terestingly, Edge had the lowest mean NAS and the
smallest mean and median P values. Similar results
w as found for the 114 Java classes in which the CAMC
was evaluated.

A further reason why constructors confuse the mea-
surement of cohesion is that, by their nature, they are
methods which are more likely to use the class at-
tributes declared in initialising values than the non-
constructor methods would. In addition, constructors
tend to comprise few (if at all) parameters in their sig-
natures. In other w ords, a metric based on the pa-
rameters of the methods should exclude constructors.
It could be argued that destructors fall into the same
category, although they tend to be declared less often
in classes.

One might think that a purer measure of cohesion
than that given w ouldbe to modify the HD metric
to ignore an y parameters which appear in the form
of other classes (i.e., class coupling). How ever, the
problem with omitting such parameters is that a high
percentage of the classes analysed used this form of
coupling extensively. The modi�ed metric would hold
no real value based on arelativ ely small subset of all
class parameters. T able 7 emphasises the di�erence be-
tw een the three systemsin this respect. It shows the
frequency of system de�ned parameters in the meth-
ods of eac h class. It can be seen that in Et++, only
tw oclasses had zero system de�ned parameters with
sev en classes having tw o system de�ned parameters.
Contrast this with nine of the tw en tyclasses in Edge
having zero system de�ned parameters and nine with a
single system de�ned parameter. Fifteen of the tw en ty
Rocket classes had zero system de�ned parameters.
The remaining �v e had just one system de�ned pa-
rameter.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

Class NMC With Constructors Without Constructors Di�erence
Class 1 21 (2) 0.77 0.87 0.10
Class 2 15 (1) 0.78 0.79 0.01
Class 3 14 (3) 0.80 0.70 0.10
Class 4 2 (1) 0.20 0.50 0.30
Class 5 3 (1) 0.33 0.33 no change
Class 6 3 (1) 0.33 0.00 0.33

Table 5. HD values with and without inclusion of constructors (three largest and three smallest
classes – Et++).

Class NMC With Constructors Without Constructors Di�erence
Class 1 24 (1) 0.66 0.71 0.05
Class 2 23 (2) 0.61 0.60 0.01
Class 3 22 (2) 0.58 0.58 no change
Class 4 5 (1) 0.77 0.66 0.11
Class 5 4 (1) 0.50 nc nc
Class 6 2 (1) 0.20 nc nc

Table 6. HD values with and without inclusion of constructors (three largest and three smallest
classes – Edge).

One explanation for the lack of system de�ned at-
tributes in Rocket is that parameters to the methods in
the classes of this this system tend to be only link and
list data structure oriented, v ery often receiving them-
selves as a parameter type. For example, the Rocket
LoopList class uses LoopList, Dlink and Boolean as
parameters to its methods; this is a t ypical feature of
classes in this system.

There is another issue which arises when trying to
establish developer con�dence in a measure of cohe-
sion and ties supposition tw oand three together. It
can be seen from Tables 5 and 6 that large classes tend
to have higher HD values than small classes. This, we
explained, was the fault of the HD metric de�nition.
In the paper by Bansiya et al. [2], a strong correlation
w as found betw een expert opinion of class cohesion and
the CAMC values. Although we cannot say withan y
certain ty,we hypothesise (based on our earlier obser-
vations) that in the Bansiya paper, the experts sub-
consciously used the size of the class as a surrogate for
its cohesion, in which case the underlying supposed,
signi�cant relationship is
aw ed.The experiment with
expert developers needs to be replicated before any �rm
conclusions can be made. We conclude that any cohe-
sion metric should be normalised to remove the size
e�ect before any attempt to show correlation with de-
veloper opinions is made.

5 Discussion

A feature of the HD metric (which could be consid-
ered a w eakness)is the single counting of parameter
types, irrespective of how many times that parameter
type occurs in the methods of the class. In defence
of the metric adopted, inclusion of a count of each pa-
rameter would render the metric cumbersome and very
di�cult to interpret.

Generally speaking, a criticism that could be levelled
against a study of this sort is that the classes examined
were all of the same type and the results are thus not
generalisable to other domains. How ev er, three t ypes of
domain were chosen for the case study, re
ected in the
three systems investigated. Each system represented a
di�erent C++ application and, as such, the threat to
the validit y of the study is reduced from this viewpoint.

Another criticism of this study is that the HD met-
ric has not been theoretically validated to conform to
certain guidelines Briand et al. [8]. In defence of this,
w estress that the main purpose of the paper was to
show the practical limitations associated with cohesion
and the HD in particular; addressing theoretical issues
of the metric is left for future work.

Finally, the choice of classes in alphabetic order from
the three systems could be criticised because it may
cause selection of clusters of classes related to eac h
other through their name. How ev er, we feel thatan y
selection criteria chosen would have been subject to one
criticism or another.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

System Zero One Two Three Four
System One (Et++) 2 8 7 2 1
System Two (Rocket) 15 5 0 0 0
System Three (Edge) 9 9 2 0 0

Table 7. Frequency of system defined parameter types in the three systems.

6 Conclusions

The softw are engineering concept of cohesion has al-
w ays been considered a subjective concept and there-
fore di�cult to capture in a metric. In this paper,
a metric based on Hamming Distance was used as a
vehicle for demonstrating problems in measuring cohe-
sion. Three suppositions related to cohesion were in-
vestigated and data collected from sixty classes across
three industrial C++ systems. Results indicated that
the metric did reveal some interesting issuesin terms
of classes and systems studied. How ever, any attempt
at de�ning cohesion �rstly , cannot be divorced from
coupling; secondly, size is a confounding factor in the
calculation of cohesion and, �nally, class features such
as constructors confuse its de�nition. A sensible co-
hesion metric will certainly aid comprehension of the
features of the system under scrutiny. It will not, how-
ev er, pro vide a de�nitive view of cohesion. The empir-
ical ev aluation described in this paper ideally needs to
be replicated to either support or refute its arguments
and to further our understanding of cohesion.

Acknowledgements

The authors ackno wledge the help of Jim Bieman at
the Dept. of Computer Science, Colorado State Uni-
versity,U.S., for access to the three systems used in
this paper.

References

[1] E. Allen and T. Khoshgoftaar. Measuring coupling
and cohesion: an information-theory approach. In
IEEE International Symposium on Software Met-
rics, Boca Raton, Florida, US, pages 119{127, Nov
1999.

[2] J. Bansiya, L. Etzkorn, C. Davis, and W. Li.
A class cohesion metric for object-oriented de-
signs. Journal of Object-Oriented Pr ogramming
(January), pages 47{52, 1999.

[3] J. M. Bieman and L. Ott. Measuring functional
cohesion. IEEE T ransactionson Software Engi-
ne ering, 20(8):644{657, 1994.

[4] D. Binkley, M. Harman, I. Raszewski, and
C. Smith. An empirical study of amorphous slicing
as a program comprehension tool. In Pr oceedings
of the 8th International Workshop on Pr ogram
Comprehension (IWPC'2000), Limerick, Ireland,
pages 161{170, 2000.

[5] L. Briand, E. Arisholm, S. Counsell, F. Houdek,
and P . Thevenod-Fosse. Empirical studies of
object-oriented artifacts, methods and processes:
State of the art and future direction. Empirical
Software Engineering, A nInternational Journal,
4(4):387{404, 1999.

[6] L. Briand, J. Daly, and J. Wust. A uni�ed frame-
w ork for cohesion measurement in object-oriented
systems. Empirical Software Engineering Journal,
3(1):65{117, 1998.

[7] L. Briand, J. Wust, J. Daly, and V. P orter. Ex-
ploring the relationships betw een design measures
and softw arequalit yin object-oriented systems.
The Journal of Systems and Software, 51:245{273,
2000.

[8] L. C. Briand, S. Morasca, and V. R. Basili.
Property-based software engineering measure-
ment. IEEE T ransactionson Software Engineer-
ing, 22(1):68{85, 1996.

[9] S. R. Chidamber and C. F. Kemerer. T ow ards a
metrics suite for object-oriented design. In OOP-
SLA '91, Phoenix, Arizona, pages 197{211, 1991.

[10] S. Counsell, E. Mendes, P. Newson, S. Swift, and
A. Tucker. Ev aluation of a class cohesion metric
for OO design. Birkbeck T echnic alR eport02-01,
2002.

[11] S. Counsell, E. Mendes, S. Swift, and A. Tucker.
An empirical investigation offault seeding in re-
quirements documents. In Pr oceedingsof Empir-
ical Assessment in Software Engineering (EASE)
'01, Keele, UK, 2001.

[12] S. Counsell, P. Newson, and E. Mendes. Architec-
tural level h ypothesis testing through reverse engi-
neering of object-oriented soft ware. In Pr oceedings
of the 8th International Workshop on Pr ogram

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

Comprehension (IWPC'2000), Limerick, Ireland,
pages 60{66, 2000.

[13] K. El Emam, S. Benlarbi, N. Goel, and S. Rai.
The confounding e�ect of class size on the validit y
of object-oriented metrics. IEEE Transactions on
Software Engineering, 27(7):630{650, 2001.

[14] R. Hamming. Error detecting and error correcting
codes. Bell System Technic al Journal, 29:147{160,
1950.

[15] M. Hitz and B. Montazeri. Measuring cou-
pling and cohesion in object-oriented systems. In
Proceedings International Symposium on Applied
Computing, Sep 1996.

[16] W. Li and S. Henry. Maintenance metrics for the
object-oriented paradigm. In Pr oceedingsof the
First International Software Metrics Symposium,
Baltimore Maryland, pages 52{60, May 1993.

[17] R. Pressman. Softwre Engineering: A Prac-
tioner's Approach (Fifth Edition. McGraw Hill,
2000.

[18] W. P .Stevens, G. J. Myers, and L. L. Constan-
tine. Structured design. IBM Systems Journal,
13(2):115{139, 1974.

[19] E. Y ourdonand L. Constantine. Structured De-
sign. Prentice Hall, 1979.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on April 24, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

